一.干扰的起因:
电压瞬时跌落、短时中断是由电网、变电设施的故障或负荷突然出现大的变化所引起的。在某些情况下会出现两次或更多次连续的跌落或中断。电压变化是由连接到电网的负荷连续变化引起的。
这些现象本质上是随机的,其特征表现为偏离额定电压并持续一段时间。电压瞬时跌落和短时中断不总是突发的,因为与供电网络相连的旋转电机和保护元件有一定的反作用时间。如果大的电源网络断开(一个工厂的局部或一个地区中的较大范围),电压将由于有很多旋转电机连接到电网上使之逐步降低。因为这些旋转电机短期内将作为发电机运行,并向电网输送电力,这就产生了电压渐变。
作为大多数数据处理设备,一般都有内置的断电检测装置,以便在电源电压恢复以后,设备按正确方式起动。但有些断电检测装置对于电源电压的逐渐降低却不能快速作出反应,结果导致加在集成电路上的直流电压,在断电检测装置触发以前已降低到最低运行电压水平之下,由此造成了数据的丢失或改变。这样,当电源电压恢复的时候,这个数据处理设备就不能正确再起动。
二.试验目的:
IEC61000-4-11标准规定了不同类型的试验来模拟电压的突变效应,以便建立一种评价电气和电子设备在经受这种变化时的抗扰性通用准则。其中对电压渐变作为一种型式试验,根据产品或有关标准的规定,用在特殊的和认为合理的情况下。
三. 3个专门的术语:
(1)电压瞬时跌落指在电气系统的某一点,电压突变下降,在经历了半个周期到几秒钟的短暂持续期后,又恢复正常。
(2)短时中断指供电电压消失一段时间,一般不超过1min。短时中断可认为是100%的幅值瞬时跌落。
(3)电压渐变指供电电压逐渐变得高于或低于额定电压,变化的持续时间相对周期来说,可长可短。
四. 试验的电压等级:
试验的电压等级分为两种(见图12和表8,表9)
表8 电压跌落和短时中断的试验等级
试验等级 |
电压跌落和短时中断(%) |
持续时间(周期) |
0% UT[/td][td=1,1,33%]100 |
0.5,1,5,10,25,50X |
|
40% UT[/td][td=1,1,33%]60 |
|
|
70% UT[/td][td=1,1,33%]30 |
|
表9 电压渐变的试验等级
试验等级 |
下降时间 |
保持时间 |
上升时间 |
40% UT |
T2s±20% |
1s±20% |
2s±20% |
0% UT |
T2s±20% |
1s±20% |
2s±20% |
五. 试验仪器:
主要指标包括:
输出电压:精度±5%;
输出电流能力:100%UT时≤16A,其他输出电压时能维持恒功率,如70%UT时≤23A;40%UT时≤40A;
峰值起动电流能力:不超过500A(220V电压时):250A(100V~120V电压时);
突变电压的上升或下降时间:1μs~5μs(接100Ω负载);
相位:0°~360°(准确度为±10°);
输出阻抗呈电阻性,并应尽可能小。
实现上述功能的试验仪器有两种基本格式,分别见图13和图14所示。
图13是一种价格相对比较便宜的试验发生器形式,当两个开关同时分断时,便中断输出电压(中断时间可事前设定);当两个开关交替闭合时,便可模拟电压的跌落或升高。发生器的开关可以由晶闸管或双向晶闸管构成,控制线路通常做成在电压过零处接通和电流过零处断开,所以这种线路只能模拟电压切换的初始角度为0°和180°的情况,即使如此,由于仪器价格较低,也能满足一般电气与电子产品对电网骚扰的抗扰度试验需要,仍然获得了广泛的应用。
图14的这种发生器结构比较复杂,造价也贵,但波形失真小,电压切换的相位角度可以任意设定,也比较容易实现电压渐变的试验要求。
六. 试验方法:
根据选定的试验等级及持续时间进行试验。试验一般做3次,每次间隔时间为10s。
试验在典型的工作状态下进行。
如果要规定电压在特定角度上进行切换,应优先选择45°,90°,135°,180°,225°,270°和315°。一般选0°或180°。
对于三相系统,一般是一相一相地进行试验。特殊情况下,要对三相同时做试验,这时要求有3套试验仪器同步进行试验。